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Social dilemmas

in all dilemmas.

We use assortativity in linking and learning by studying social dilemmas on a dynamic network, where
assortativity in linking runs faster than assortativity in learning, so that both can work together. The
emergence of cooperation is based on the structured heterogeneity of a network, which includes
heterogeneous interactions and a heterogeneous population structure made by assortativity. In an
infinite population, cooperation is more likely to happen in the Snowdrift game when there is
heterogeneous interaction, in the Stag-hunt game when there is heterogeneous population structure,
and in the Prisoner’s Dilemma game when there are two different kinds of settings. In a finite
population size, the heterogeneous interaction plays an important role in emergence of cooperation

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Cooperation is one of the most intriguing issues now con-
fronting scientists [ 1]. Cooperation is not favored by natural selec-
tion [2]. However, this prediction contradicts the many examples
of cooperation in human societies. The homogeneous interaction
setting is the primary cause of defection [3]. We introduce a
new model where a heterogeneous population of agents are
assortatively [4-6] matched in pairs to joint in a game. Each node
(agents) carries one of two different strategy types. Network evo-
lution is achieved by an assortative rewiring process. A random
link between nodes A and B is chosen for assortative rewiring.
Suppose node A is chosen for rewiring with a probability of a (0
< a < 1) of connecting to one of the nodes of the same strategy
type in the network and a probability of (1 — a) of randomly
connecting to one of the nodes (i.e., preferential attachment).
The connection between network evolution and preferential at-
tachment dates back to Albert and Barabasi [7], and networks
are commonly referred to as scale-free networks. In this paper,
a network with assortative preferential attachment is called an
assortative network. This network model differs from those found
in most previous studies [7-19] in which a node is more likely to
meet a node linked with more neighbors.

To specify the assortative linking dynamics, we adhere to prior
research [8]. To characterize the dynamics, a discrete stochastic
model is considered. Assuming a network consists of two types of
nodes (e.g., C and D); then, network rewiring due to assortativity
results in a variable number of links (CC, CD, and DD). Therefore,
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the system has three types of link existed. A certain type of link
transforms into a link (CC, CD, or DD) with a given probability
at each time step. In this case, the evolution of the network via
assortative rewiring is a Markov chain. Given this, a transition
probability matrix describing these links (CC, CD, and DD) is calcu-
lated; assuming the Markov chain is aperiodic and irreducible, a
unique stationary distribution of dynamic links is then computed.

In this context, we also discuss assortative learning dynamics
for the evolution of cooperation in the network. The method
of assortative learning is similar to the process of assortative
rewiring: at each time step, a random node is selected. A node
has a b (0 < b < 1) probability of randomly adopting other
nodes of the same kind and a (1 — b) probability of adopting
different types of nodes. When two nodes meet, they change
their strategies using a pairwise comparison rule [9], namely one
node adopting other node’s strategy through strategy updating
by comparing the payoffs between two nodes. Consequently, this
paper presents two novel models: assortative linking dynamics
and assortative learning dynamics.

Using the interaction between the two dynamics mentioned
previously, we investigate the evolutionary process of games in
a dynamic network where assortative linking dynamics proceed
more quickly than assortative learning dynamics. This indicates
that the dynamic network obtains dynamic stability first and
then assortative learning dynamics are executed immediately
(e.g., similar to the treatment in [10-13]). Here, we examine
the role of assortative linking and learning in evolutionary so-
cial dilemmas in an effort to explain why cooperative behavior
is so prevalent in human interactions. It is demonstrated that
the structured heterogeneity of networks driven by assortativity
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in linking and initial number of cooperators separately favor
the emergence of cooperation in different dilemmas in an infi-
nite population, but are not necessary conditions for the emer-
gence of cooperation in a finite population where heterogeneous
interaction due to assortative linking can be of great significance.

2. Games and social dilemmas

Social dilemmas are situations in which individuals are willing
to seek self-interest that leads to a lesser return than they would
gain by promoting collective cooperation [14]. Social dilemmas
are modeled as three types of two-person games in which players
can either cooperate or defect in their encounters: the prisoner’s
dilemma game (PD), snowdrift game (SD), and stag-hunt game
(SH). Games are classified as payoff structures with a combination
of two actions, as seen in the table below. Mutual cooperation
receives reward R, but mutual defection produces penalty P.
Unilateral defection and cooperation lead to payoffs T and S,
respectively. In terms of the relative ordering of payoffs R, P, T,
and S, they naturally pose various dilemmas:

C D
C(R S
D\T P
In the PD scheme, for whichT > R > P > S, 2R > T + S, uni-
lateral defection is always optimal since the defector can earn
reward T or P by ignoring their partner’ choice—in this case, T >
R and P > S. Therefore, it is rational for both parties to defect. In
the SD scheme, for which T > R > S > P, an individual’s welfare
is contingent on their partner’s choices. Assuming the partner
opts for defection, the person favors cooperation over defection
since unilateral cooperation is superior than mutual defection
for that individual, S > P. If the partner selects cooperation,
they will pick defection since unilateral defection is superior
than joint cooperation, T > R. Hence, individuals do not join
into mutual cooperation. In the SH scheme, the payoff structure
is R>T > P > S. Compared to the tension in the SD scheme,
participants in the SH scheme share a similar reasoning, namely,
that the welfare of the person depends on the choices of others,
but with some distinctions. If the partner chooses defection,
the individual will likewise defect, as unilateral cooperation is
inferior than joint defection, P > S. In contrast, when the partner
chooses cooperation, the person also chooses cooperation since
joint cooperation is preferable than unilateral defection, R > T.
Consequently, there is tension when individuals coordinate.

3. Role of assortative linking and learning in the evolution of
cooperation

Consider the above three games played in a population of
size N. Individuals are randomly put as nodes with L links in a
network. This indicates that the initial number of links in the
network is LN/2. The number of links possessed by an individual
is tiny, suggesting a restricted number of network neighbors,
while the overall number of links remains constant. The links are
undirected and self-loops for an individual are banned.

We investigate how the frequencies of strategies C and D alter
under the coevolution of linking and strategy in the three games.
Consider the scenario in which the linking dynamics proceed
sufficiently faster than strategy updating. As a result of the linking
dynamics operating on a shorter period, the system establishes
a steady state and then updates it strategy. Alternately, as the
model of active linking proposes [15], if linking happens on a
slower timeline strategy updating occurs on a static network,
which is a common practice noted by previous studies [16].
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Fig. 1. Assortative linking. If dashed link CD is randomly chosen to be broken
off, then, with a probability of 1/2, end D is selected to perform the rewiring
process. With a probability of a, end D connects to the same type held in the
network; with a probability of 1 — g, it randomly connects to an agent in the
network.

The dynamics of links are represented as a rewiring process. In
each phase of rewiring, a link ZK (ZK = CC, CD, or DD) is randomly
picked from the whole network to be severed, and then a random
individual is chosen to rewire the link. A person with a probability
of a (0 < a < 1) switches the link to one with the same strategy
in the network, and then the link is rewired to an individual with
a different strategy with a probability of 1 — a (see Fig. 1).

In this process of assortative linking, link ZK is eliminated and
a new link (CC, CD, or DD) is formed. Therefore, the dynamics of
assortative linking turn out to be a Markov chain, and this process
is described as a transition matrix, Mzyop), Which is defined
as the probability of link ZK transforming into a new link, OP.
Intuitively, for links CC or DD, the probability of transforming
from CC to DD or from DD to CC is zero. In other words, we
can only calculate M(Cc)(c[)), M(DD)(CD): M(CD)(CC): and M(CD)(DD)- As an
illustration, M(ccycpy, which is the probability that of link CC of ¢
time transforms to link CD of t 4+ 1 time, can be described as
follows:

(1) Probability is 2/LN when link CC is randomly chosen in the
initial step of the rewiring dynamics.

(2) When link CC is selected, the link is broken off and, with
a probability of 1/2, rewiring happens at one of the link’s ends.
Due to the presence of two ends of the same type, only when the
selected end connects to a different type (i.e., with a probability
of 1 — a) will the link be transformed from CC to CD. Thus,

21 2 1
Mccyepy = m[g“ —a)(1—xc)]+ m[i(l —a)(1—xc)]
2
= (1= a1 —xc) (1)

where x, is the frequency of cooperators in the network.
Similarly, computing Mppycp), M(cpycc), and Mcpyppy Will give
rise to the transition probability matrix:

LN LN

where I3 is the identity matrix and matrix M is calculated as
follows:

cc fa)) DD
CC (2/IN[a+ (1 —a)xc] 2/IN(1—a)(1—xc) 0

M=cD | 1/IN[a+ (1 —a)xc] 1/IN (1—a) 1/IN[a + (1 —a) (1 — x¢)]
DD 0 2/IN1—a)xc  2/IN[a+ (1—a)(1—xc)]

(2)

According to the ergodic theorem [20], when time approaches
infinity, aperiodic and irreducible conditions will lead the Markov
chain to attain a stationary distribution, as the transition proba-
bility is no longer equal to zero. Using the equation vM = v, we
can compute a unique stationary distribution, v = (v¢c, vep, Vpp)-
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The result is
v = (xcla+ (1 —a)xc], 2xc (1 —a) (1 — xc),
[a+ (1 —a)(1—xc)I(1—xc)) (3)

Then, we examine the evolutionary process of the strategy as
an illustration of assortative learning dynamics. It consists of two
processes: (1) individual i is randomly chosen to adopt another
with the same type with a probability of b (0 < b < 1) as well as
to adopt a random agent (e.g., individual j) with a probability of
1 — b; and (2) in the learning process, individual i adopts other
individuals through strategy updating by comparing the payoffs
between individual i and individual j. Individual i replaces their
strategy with strategy j with the following probability [9]:

1
1 + exp@l™i—)
where 7; and n; represent the accumulated payoff from the
earlier assortative linking dynamics for i and j, respectively. Pa-
rameter w represents the level of selection. For w < 1, selection is

considered as a weakness; for w > 1, selection is a strength and
it is more probable that an advantageous strategy will be taken.

(4)

4. Results and analysis

Strategy updating is significantly slower than that of the dy-
namics of assortative linking; hence, the average payoff accu-
mulated from the interactions of each agent i hinges on the
stationary state of the Markov chain in Eq. (3). Afterward, as-
sortative learning dynamics are implemented. In this scenario, in
each time step, there are three probabilistic cases for the number
of cooperative individuals: adding a new cooperative member,
maintaining the same, and losing an original one. The number of
cooperators in the rise from N¢ to Nc + 1 is decided by a pair-
wise comparison rule, as given in Eq. (4), and the corresponding
transition probability in such a situation is
TH=(1- b)xcxp%
1+expw(nD—né)

A
1
+ (1 = b)xcxp —
1+ exp™m—7c)
X
1
=2(1—bxxp———— (5)

14 exp®=70)

A is a situation in which a cooperator i is randomly chosen with
probability (1 — b) to meet a defector j randomly chosen, and the
defector j takes the strategy of the cooperator i. x is a situation in
which a defector j is randomly chosen is with probability (1 — b)
to meet a cooperator j randomly chosen, and the defector j takes
the strategy of the cooperator i.

Similarly, decreasing the total number of cooperators from N
to Nc—1 is described as

1 1
Te =1 = bxexp—————— + (1 —b)xexp
1+ exp“’(” ~p) 1+ exp“’(” )
1
=2(1 - bxxp———— (6)
1+ exp®(Tc=m)

We consider the heterogeneous network game under accumu-
lated payoff framework. Using probability to increase the number
of cooperators from N¢ to Ne + 1, TF, and the probability to
decrease the number from N¢ to Nc—1, TS, the dynamics can
be approximated by a stochastic differential equation with drift
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TF —T¢ and diffusion ,/(TZ + T7)/N [21] in a infinite population,

and we can consider the effect of fixation probability to investigate
how an individual with a different strategy can take over the
entire population in a finite population.

For an infinite population size. In a large population, assortative
learning dynamics may be approximated by a stochastic differen-

tial equation with drift TX —TZ and diffusion /(TS + T2 )/N [21].

Thus,

Xe=TF —To +/(TF +T7)/N * e
1 1
=2(1 = b)x:xp —2(1 = b)x:xp

1+ exp“’(”ff”é) 1+ exp“’(” =)
+ (T +T)/N e

1
=2(1 = bxe(1 = x)—————5— — 2(1 = b)x(1 - %)
1+ exp®™~7c)

1
X ————— +

1 + expn—. (T¢ + T )N e
exp“c

/)

— 201 — be(1 — e ———— L

1+ exp“’(”fl_”lc) 1+ exp“’(”é_”{v)

+ (T +T)/N e

By usmg the calculations from the prev1ous study [21],
_ 1 i _
(] m(ﬂJ i o] nj)) tanh (JT n3)), then this yields
+exp D c 1+exp”c™™D

x‘czz(l—b)xc(l—xc)tanh (! —7l)+ /(T + T7)/N % ¢

where ¢ is the Gaussian white noise with variance 1.
In an infinite population, as N increases, the diffusion term

(TC+ +T7)/N * ¢ vanishes at /1/N, and the population sat-
isfies a well-mixed condition. 7} and n{J can be approximated

by 7n¢ and mp, which are, respectively, the average payoffs of
the cooperators and defectors, respectively. Meanwhile, tanh

2 (i - n{J) = ¢ (nc’ — nﬁ) +0(x3), where O(x3) is a higher
order infinitesimal, yields
Xc = (1 = b)xc(1 — xc)we — 7p). (7)

Hence, we obtain a replicator equation to represent assortative
learning dynamics to study the evolutionary dynamics of the
strategy. Moreover, Eq. (7) is equivalent to the payoff monotone
dynamics [2] method, which can be used to predict the equilib-
rium in a dynamic system by comparing the average payoffs of
the cooperator and defector. Consequently, Eq. (7) consists of the
difference between the expected payoff of the cooperator and
that of the defector:

n(xc) = 7c — 7p, (8)

The ¢ and rp will be computed by the stationary distribution of
the assortative linking dynamics:

e = Zl)ccRLN/ZNXC + UCDSLN/ZNXC = VccRL/XC + UCDSL/ZXC
Jip = VCDTLN/ZNXD+2UDDPLN/2NXD = UCDTL/2XD—|—VDDPL/XD

Further, from Eq. (3), and substituting vcc, vep, and vep into the
above equation, we obtain

e = Xcla+ (1 — a)xc]RL/x¢c + 2x¢c (1 — a) (1 — x¢)SL/2x,
=la+ (1—a)xc]RL+ (1 —a) (1 — xc)SL
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Fig. 2. Two stable equilibria in the evolutionary process.

p = 2xc (1 —a) (1 — x¢)TLN/2Nxp + [a + (1 — a)(1 — xc)]
X (1 —Xxc)PL/xp
=xc(1—a)TL+[a+ (1 —a)(1 — xc)]PL
Substituting the equations above into Eq. (8), we have
nx;)=aR—-S)+S—-P+(1—a)R+P—-S—T) (9)

Therefore, the payoff monotone dynamics are determined by the
signs of

n(0)=a(R—S)+S—P (10)
n(1)=R—T +aT —aP (11)

Proposition 1. Inthe PD(T > R>P > S,2R>T +S):

(1) ;thre is a unique stable equilibrium x. = 0 if and only if 0 < a

< ET:P;;

(2) There is a unique stable equilibrium x. = 1 if and only if %
P—S—a(R—S5)

<a<1landXe > qgwps-T

Because n(x.) is linear in x;, when n(0) < 0 and n(1) < O
(ie, when(R—-S)+S —P<0andR —T + aT — aP < 0),
n(x.) is always less than zero for any x., such that cooperators
always have a smaller expected payoff than defectors, and there
is a unique stable equilibrium x.. In this case, according to a (R —
S)+S—P<0andR—T + aT — aP < 0, we have a < (T —
R)(T — P)and a < (R — S)/(P — S). In the PD scheme, the payoff
structure T > R>P > Sand 2R > T + S yield 0 < (T — R)/[(T —
P)<1<(R—S)/(P—S).Because 0 < a < 1, we have 0 < a <
(T — R)/(T — P), and this yields Proposition 1(1).

Similarly, when n(0) < 0 and 5(1) > 0, as shown in Fig. 2, the
expected payoff of cooperators is larger than that of defectors (x,
> x.*) and the expected payoff of cooperators is smaller than that
of defectors as x, < x.*. This means that when cooperators are
rare, X, = 0 in a stable equilibrium; otherwise, when defectors
are rare, xo. = 1 in a stable equilibrium. Hence, there are two
stable equilibria: x. = 0 and x. = 1. In this case, given 7n(0)
< 0and n(1) > 0, we havea < (R — S)/(P — S)and a > (T —
R)[(T — P), so that (T — R)/(T — P) <a < 1and x, > x.* are

fgupd. X means n(x.) = 0, so that x.* = %, thus
giving Proposition 1(2).

Proposition 2. Inthe SD(T >R > S > P):

(1) There is a unique stable equilibrium x. = 1 if and only if %
<ac<l;

(2) There is a unique stable equilibrium x. = % if and
only if 0 < a < =P,

When 5(0) > 0 and n(1) > 0, the expected payoff of a coopera-
tor is greater than that of a defector in all evolutionary processes,
which means that there is a unique stable equilibrium, x. = 1. In
this case, with the conditions n(0) > 0 and n(1) > 0, we have a
> (T — R)(T — P)and a > (R — S)/(P — S). In the SD, we have
T>R>S>P,and1>(T—R)/T—-P)>0>R-=S)/(P—-2S)is
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Fig. 3. Stable equilibria x.* in the evolutionary process.

obtained; thus, when (T — R)/(T — P) < a <1, there is a unique
stable equilibrium that contains only cooperators.

When 7(0) > 0 and n(1) < O (see Fig. 3), there is a unique
stable equilibrium x. = x.* (0 < x.* < 1), which is determined
by the evolutionary process. When cooperators are rare, the ex-
pected payoff of a cooperator is higher than that of a defector and
the number of cooperators increases. When defectors are rare, the
expected payoff of cooperators is smaller than that of defectors
and the number of cooperators decreases. Thus, there is a unique
stable equilibrium, x, = x.* (0 < x.* < 1), which includes some
cooperators and defectors. In this case, when n(0) > 0 and (1)
< 0, we have 0 < a < (T — R)/(T — P), and when n(x.) = 0, we

have x.* = %, thus giving Proposition 1(2).

Proposition 3. Inthe SH(R>T > P > S):
There is unique stable equilibrium x. = 1 if and only if 0 < a <

P—S—a(R-S)
1 and Xc > m.

Proof. The logic behind the proof of Proposition 3 is the same as
that for Proposition 1(2).

Together with the propositions above, we can conclude the
following:

The results shown in Fig. 4 explain the coevolution of assor-
tative linking dynamics and assortative learning dynamics in an
infinite population. These findings reveal the role of assortative
rewiring and show the conditions under which cooperation might
emerge. The increase in the degree of assortative rewiring (i.e., a
greater likelihood of rewiring to an agent of the same type at
each time step) facilitates the emergence of cooperation in the
SD. Specifically, for the PD and SG schemes, the equilibrium—
the coexistence of cooperators and defectors—is so unstable that
divergence develops as the number of cooperators changes. When
the number of cooperators is common in the population, cooper-
ation dominates defection in the PD, as the degree of assortative
rewiring increases, as well as in the SG, where the role of as-
sortative rewiring is overlooked. Consequently, the results reveal
three cases among social dilemmas in which the emergence of
cooperation depends only on the degree of assortative rewiring
(in the SD) or on the number of cooperators initially (in the SG),
and on the combination of both (in the PD).

Eq. (7) shows that b has no effect the evolutionary equilibria
in the replicator dynamics, whereas it does impact the speed
of movement toward the equilibria. As this speed slows (i.e., as
individuals with the same strategy occur less frequently than
those with different strategies), together with Proposition 2(1),
the frequency of cooperation in the SG scheme gets closer to one,
accelerating the convergence of the equilibria. In the meantime,
it also accelerates the equilibrium to be a defective equilibrium
(see Proposition 1(1)). The parameter b is hence neutral. The role
of w in the replicator dynamics is the same as the function of
b, except it operates in the opposite direction (i.e., it accelerates
convergence as it changes). A strong w exerts pressure to acceler-
ate the convergence of the equilibria, whereas a weak w retards
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PD: . =0 Xe = 1(xe > x.")
( |
; ; — a
0 (T=Ry/(T—P) I
\ SD: xCY= xc* SD:YxC =1 |
SG: x! =1 (x,>x.")
P-S—a(R-S)

Note x, :(1—a)(R +P-S-T)

Fig. 4. Evolutionary equilibria as a function of a.

the convergence of the equilibria. In this context, an advantaged
strategy is more likely to dominate the whole population through
a strong selection.

For a finite population size. In a finite large population, we ad-
dress fixation probability following previous studies [3,20,22-25].
We attempt to ascertain the possibility that a person employing
with a certain strategy will invade and take over the population.
Let pc represent the probability that a cooperator has entered a
population of defectors in order to take over the entire population
and pp be a defector who aims to take over the entire population
of cooperators. In previous studies [3,22-25], pc and pp were
characterized as follows:

1 I v

pC= T NI D= —— T (12)
1+Z}V1]_[],~)/i 1+ZJN1]_[JI»)/,-
where
Tc
Vi = f
According to Eq. (12), we have
w_ v, 1,
pe 1+ T En T 1+ X Ew
N—1
= 1_[ Vi
i
N—-1 ._
Te
=]1=. (13)
1

If pp/pc > 1, defectors take advantage of cooperators in the
evolutionary process. Using the calculations in Egs. (5) and (6)
yields

To 1
T% =2(1- b)chD(m)/(z(l — b)xexp
¢ 1+exp V¢ P
1
X —
1+ exp®™~7c)

@ JTj—JTi)
1+ex (D ¢ il

e — %exp_“’(”f_”é) (14)
1+ exp")(”é’”g)

In a large population in which individuals are well mixed, 71; -

is equal to ¢ — mp. Substituting Eq. (9) into Eq. (14) yields
N—1 .—

11 Tc

Pc 1—[ Tc+

i

— exp_w Z;V_l(”(‘ —7p)

—exp® SN aR-S)1+S—P+(1-a)R+P-S-T) )

_ exp—w[a(R—S)(N—l)+(S—P)(N—l)+(]—a)(R+P—5—T)% N

For & > 0, we have pc > pp. Therefore,
E >0
—->aR-—SYN—-1)+(S—P)N—1)+(1—a)R+P—-S—T)
1N(N-=1)
X —— >
N 2

0

T—-R+P-S (T—S)—(R—P) 1-49%
—a> = = —. (15)
R=S—P+T (T-5+R-P) 14D
—_———
[

Proposition 4. (1) In the PD, cooperators dominate defectors if and
onlyif ® <a<1;
(2) In the SD and SH, cooperators dominate defectors if and only if

0<%<1andq§<a<1.

In the PD, we have T > R > P > S and 2R > T + S such that
0<(R—P)/(T—S)< 1.Because 0 <a < 1, when ® < a < 1,
Eq. (15) is supported, and a cooperator invades the population of
defectors and takes over this entire population, namely, pc > pp.
Thus, Proposition 4(1) can be proven.

In the SD, we have T > R > S > P. Compared with the PD, it
is uncertain whether 0 < (R — P)/(T — S) < 1, and only if O
<(R—=P)/(T—S)<1dowehave0 < @ < 1, and then ® < a
< 1 can be met. When 0 < (R—P)/(T—-S) <land ® <a <
1, cooperators are supported in the evolutionary process of the
SD. Similar considerations apply to the SH, and Proposition 4(2)
holds.

In Proposition 4, we can also focus on the role of w. For w = 0,
Eq. (14) will be equal to 1, this means pc will be equivalent to pp,
Proposition 4 will be not valid. For @ = 1, it corresponds to strong
selection and yields an accelerating speed to make a cooperator
to take over the entire population in Proposition 4. For 0 < w <
1, it corresponds to weak selection and yields slowing speed of
results in Proposition 4.

5. Discussion and conclusion

In this study, the coevolution of assortativity in linking and
learning is investigated. We provide a novel model for networks
based on assortative linking, in which people are placed in var-
ious social dilemmas. To represent assortative linking for the
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evolution of networks, we present a discrete stochastic model
in which the frequencies of various types of links are governed
by a Markov chain, and these ultimately form networks with
structured heterogeneity. The evolution of cooperation in a
stochastic assortative network is then achieved. This finding
extends the use of heterogeneous graph theory [10,20,23,24] to
model evolutionary cooperation. In previous studies, more dilem-
mas of heterogeneous networks have been considered, such as a
small-world network [25] and a scale-free network [3]. Therefore,
relevant games require further study in stochastic assortative
networks.

To examine the evolution of cooperation, we also employ a
two-layer network approach [26-29], consisting of an interaction
network and a learning network. Ohtsuki et al. [26] initially
presented this concept to examine the evolution of cooperation,
claiming that it happens in a two-layer network. One layer is
an interaction network in which links are formed by the games
players play, and the other layer is a learning network built by
learning dynamics. Our study contributes to both the interaction
network and the learning network models. In particular, the bulk
of prior studies have solely examined imitation dynamics through
random learning, ignoring assortative learning. Because we know
that people are willing to adopt a person of the same type and
expect a higher payoff, assortative learning dynamics shed light
on this phenomenon.

Numerous experts have studied and researched the segrega-
tion phenomena [30-33]. We analyze a portion of this segregation
in terms of the evolution of cooperation in the network, but not
the hyper (a = 1) aspect. Although hyper-segregation is uncom-
mon, it may occur in some religious communities. It is reasonable
for an individual to match with a person who conducts the same
actions. However, bounded rationality, higher search costs, and
the presence of individuals with incomplete information on their
type all prevent complete segregation. Our study concentrates on
a typical reality.

In this study, heterogeneous interaction between network
nodes was achieved through an assortative rewiring process. This
process is a preferential attachment mechanism. Previous studies
have reported that preferential attachment can trigger assorta-
tivity, which affects evolutionary dynamics markedly [15,34,35].
For example, using the social leverage interaction, Zhang and
Elsner [34] created a social leverage network in which, through
a common acquaintance, the probability that cooperative agents
encounter cooperators is increased, thus rendering interactions
non-random (i.e., the assortative matching process). The results
of their evolutionary dynamics are similar to the findings of this
study. Pacheco, Traulsen, and Nowak [35] focused on the role of
active linking in evolutionary games, where individuals differ in
the rate at which they take new interactions, and links can be
broken off at different rates, so that in some senses in a certain
setting cooperative agents encounter cooperators is increased.
The common feature of the two studies explains how interaction
becomes assortative, generating a stable evolution of cooperation.
However, the advantage of the present study is that it considered
an assortative rewiring process instead of a social leverage pro-
cess and used a two-layer network approach to explore the role of
assortative linking and learning in evolutionary social dilemmas.
In addition, the different social dilemmas presented different
outcomes of evolutionary cooperation, which is interesting and
enlightening.

We neglected cultural assortativity and other types of as-
sortativity, which remains an opportunity for future studies. If
we consider cultural assortativity in rewiring linking, a hetero-
geneous population would be considered; in other words, the
evolution of cooperation would occur in two populations with
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different cultural identities. Such a study could thus explain the
evolution of cooperation among cultural groups.
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