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a b s t r a c t

We use assortativity in linking and learning by studying social dilemmas on a dynamic network, where
assortativity in linking runs faster than assortativity in learning, so that both can work together. The
emergence of cooperation is based on the structured heterogeneity of a network, which includes
heterogeneous interactions and a heterogeneous population structure made by assortativity. In an
infinite population, cooperation is more likely to happen in the Snowdrift game when there is
heterogeneous interaction, in the Stag-hunt game when there is heterogeneous population structure,
and in the Prisoner’s Dilemma game when there are two different kinds of settings. In a finite
population size, the heterogeneous interaction plays an important role in emergence of cooperation
in all dilemmas.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

Cooperation is one of the most intriguing issues now con-
ronting scientists [1]. Cooperation is not favored by natural selec-
ion [2]. However, this prediction contradicts the many examples
f cooperation in human societies. The homogeneous interaction
etting is the primary cause of defection [3]. We introduce a
ew model where a heterogeneous population of agents are
ssortatively [4–6] matched in pairs to joint in a game. Each node
agents) carries one of two different strategy types. Network evo-
ution is achieved by an assortative rewiring process. A random
ink between nodes A and B is chosen for assortative rewiring.
uppose node A is chosen for rewiring with a probability of a (0
a < 1) of connecting to one of the nodes of the same strategy

ype in the network and a probability of (1 − a) of randomly
onnecting to one of the nodes (i.e., preferential attachment).
he connection between network evolution and preferential at-
achment dates back to Albert and Barabási [7], and networks
re commonly referred to as scale-free networks. In this paper,
network with assortative preferential attachment is called an
ssortative network. This network model differs from those found
n most previous studies [7–19] in which a node is more likely to
eet a node linked with more neighbors.
To specify the assortative linking dynamics, we adhere to prior

esearch [8]. To characterize the dynamics, a discrete stochastic
odel is considered. Assuming a network consists of two types of
odes (e.g., C and D); then, network rewiring due to assortativity
esults in a variable number of links (CC, CD, and DD). Therefore,
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the system has three types of link existed. A certain type of link
transforms into a link (CC, CD, or DD) with a given probability
at each time step. In this case, the evolution of the network via
assortative rewiring is a Markov chain. Given this, a transition
probability matrix describing these links (CC, CD, and DD) is calcu-
ated; assuming the Markov chain is aperiodic and irreducible, a
nique stationary distribution of dynamic links is then computed.
In this context, we also discuss assortative learning dynamics

or the evolution of cooperation in the network. The method
f assortative learning is similar to the process of assortative
ewiring: at each time step, a random node is selected. A node
as a b (0 < b < 1) probability of randomly adopting other
odes of the same kind and a (1 − b) probability of adopting
ifferent types of nodes. When two nodes meet, they change
heir strategies using a pairwise comparison rule [9], namely one
ode adopting other node’s strategy through strategy updating
y comparing the payoffs between two nodes. Consequently, this
aper presents two novel models: assortative linking dynamics
nd assortative learning dynamics.
Using the interaction between the two dynamics mentioned

reviously, we investigate the evolutionary process of games in
dynamic network where assortative linking dynamics proceed
ore quickly than assortative learning dynamics. This indicates

hat the dynamic network obtains dynamic stability first and
hen assortative learning dynamics are executed immediately
e.g., similar to the treatment in [10–13]). Here, we examine
he role of assortative linking and learning in evolutionary so-
ial dilemmas in an effort to explain why cooperative behavior
s so prevalent in human interactions. It is demonstrated that

he structured heterogeneity of networks driven by assortativity
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n linking and initial number of cooperators separately favor
he emergence of cooperation in different dilemmas in an infi-
ite population, but are not necessary conditions for the emer-
ence of cooperation in a finite population where heterogeneous
nteraction due to assortative linking can be of great significance.

. Games and social dilemmas

Social dilemmas are situations in which individuals are willing
o seek self-interest that leads to a lesser return than they would
ain by promoting collective cooperation [14]. Social dilemmas
re modeled as three types of two-person games in which players
an either cooperate or defect in their encounters: the prisoner’s
ilemma game (PD), snowdrift game (SD), and stag-hunt game
SH). Games are classified as payoff structures with a combination
f two actions, as seen in the table below. Mutual cooperation
eceives reward R, but mutual defection produces penalty P.
nilateral defection and cooperation lead to payoffs T and S,
espectively. In terms of the relative ordering of payoffs R, P, T,
nd S, they naturally pose various dilemmas:

(C D
C R S
D T P

)
In the PD scheme, for which T > R > P > S, 2R > T + S, uni-

ateral defection is always optimal since the defector can earn
eward T or P by ignoring their partner’ choice—in this case, T >

and P > S. Therefore, it is rational for both parties to defect. In
he SD scheme, for which T > R > S > P , an individual’s welfare
s contingent on their partner’s choices. Assuming the partner
pts for defection, the person favors cooperation over defection
ince unilateral cooperation is superior than mutual defection
or that individual, S > P. If the partner selects cooperation,
hey will pick defection since unilateral defection is superior
han joint cooperation, T > R. Hence, individuals do not join
nto mutual cooperation. In the SH scheme, the payoff structure
s R > T > P > S. Compared to the tension in the SD scheme,
articipants in the SH scheme share a similar reasoning, namely,
hat the welfare of the person depends on the choices of others,
ut with some distinctions. If the partner chooses defection,
he individual will likewise defect, as unilateral cooperation is
nferior than joint defection, P > S. In contrast, when the partner
chooses cooperation, the person also chooses cooperation since
joint cooperation is preferable than unilateral defection, R > T.
Consequently, there is tension when individuals coordinate.

3. Role of assortative linking and learning in the evolution of
cooperation

Consider the above three games played in a population of
size N. Individuals are randomly put as nodes with L links in a
network. This indicates that the initial number of links in the
network is LN/2. The number of links possessed by an individual
is tiny, suggesting a restricted number of network neighbors,
while the overall number of links remains constant. The links are
undirected and self-loops for an individual are banned.

We investigate how the frequencies of strategies C and D alter
under the coevolution of linking and strategy in the three games.
Consider the scenario in which the linking dynamics proceed
sufficiently faster than strategy updating. As a result of the linking
dynamics operating on a shorter period, the system establishes
a steady state and then updates it strategy. Alternately, as the
model of active linking proposes [15], if linking happens on a
slower timeline strategy updating occurs on a static network,
which is a common practice noted by previous studies [16].
 c

2

Fig. 1. Assortative linking. If dashed link CD is randomly chosen to be broken
off, then, with a probability of 1/2, end D is selected to perform the rewiring
process. With a probability of a, end D connects to the same type held in the
network; with a probability of 1 − a, it randomly connects to an agent in the
network.

The dynamics of links are represented as a rewiring process. In
each phase of rewiring, a link ZK (ZK = CC, CD, or DD) is randomly
picked from the whole network to be severed, and then a random
individual is chosen to rewire the link. A person with a probability
of a (0 < a < 1) switches the link to one with the same strategy
in the network, and then the link is rewired to an individual with
a different strategy with a probability of 1 − a (see Fig. 1).

In this process of assortative linking, link ZK is eliminated and
a new link (CC, CD, or DD) is formed. Therefore, the dynamics of
assortative linking turn out to be a Markov chain, and this process
is described as a transition matrix, M(ZK )(OP), which is defined
as the probability of link ZK transforming into a new link, OP.
Intuitively, for links CC or DD, the probability of transforming
from CC to DD or from DD to CC is zero. In other words, we
can only calculate M(CC)(CD),M(DD)(CD), M(CD)(CC), and M(CD)(DD). As an
illustration, M(CC)(CD), which is the probability that of link CC of t
time transforms to link CD of t + 1 time, can be described as
follows:

(1) Probability is 2/LN when link CC is randomly chosen in the
initial step of the rewiring dynamics.

(2) When link CC is selected, the link is broken off and, with
a probability of 1/2, rewiring happens at one of the link’s ends.
Due to the presence of two ends of the same type, only when the
selected end connects to a different type (i.e., with a probability
of 1 − a) will the link be transformed from CC to CD. Thus,

M(CC)(CD) =
2
LN

[
1
2
(1 − a)(1 − xC )] +

2
LN

[
1
2
(1 − a)(1 − xC )]

=
2
LN

(1 − a)(1 − xC ) (1)

where xc is the frequency of cooperators in the network.
Similarly, computing M(DD)(CD), M(CD)(CC), and M(CD)(DD) will give

ise to the transition probability matrix:

=
LN − 2
LN

I3+
2
LN

M

where I3 is the identity matrix and matrix M is calculated as
follows:

M =

⎛⎜⎝
CC CD DD

CC 2/LN[a + (1 − a) xC ] 2/LN (1 − a) (1 − xC ) 0
CD 1/LN[a + (1 − a) xC ] 1/LN (1 − a) 1/LN[a + (1 − a) (1 − xC )]
DD 0 2/LN (1 − a) xC 2/LN[a + (1 − a) (1 − xC )]

⎞⎟⎠
(2)

According to the ergodic theorem [20], when time approaches
nfinity, aperiodic and irreducible conditions will lead the Markov
hain to attain a stationary distribution, as the transition proba-
ility is no longer equal to zero. Using the equation νM = ν, we
an compute a unique stationary distribution, ν = (ν , ν , ν ).
CC CD DD
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he result is

= (xC [a + (1 − a) xC ], 2xC (1 − a) (1 − xC ),

[a + (1 − a)(1 − xC )](1 − xC )) (3)

Then, we examine the evolutionary process of the strategy as
an illustration of assortative learning dynamics. It consists of two
processes: (1) individual i is randomly chosen to adopt another
with the same type with a probability of b (0 < b < 1) as well as
to adopt a random agent (e.g., individual j) with a probability of
1 − b; and (2) in the learning process, individual i adopts other
individuals through strategy updating by comparing the payoffs
between individual i and individual j. Individual i replaces their
strategy with strategy j with the following probability [9]:

1
1 + expω(πi−πj)

(4)

where πi and πj represent the accumulated payoff from the
earlier assortative linking dynamics for i and j, respectively. Pa-
rameter ω represents the level of selection. For ω ≤ 1, selection is
considered as a weakness; for ω > 1, selection is a strength and
t is more probable that an advantageous strategy will be taken.

. Results and analysis

Strategy updating is significantly slower than that of the dy-
amics of assortative linking; hence, the average payoff accu-
ulated from the interactions of each agent i hinges on the
tationary state of the Markov chain in Eq. (3). Afterward, as-
ortative learning dynamics are implemented. In this scenario, in
ach time step, there are three probabilistic cases for the number
f cooperative individuals: adding a new cooperative member,
aintaining the same, and losing an original one. The number of
ooperators in the rise from NC to NC + 1 is decided by a pair-
ise comparison rule, as given in Eq. (4), and the corresponding
ransition probability in such a situation is

+

C = (1 − b)xcxD
1

1 + expω(π j
D−π i

C )  
Λ

+ (1 − b)xcxD
1

1 + expω(π j
D−π i

C )  
χ

= 2(1 − b)xcxD
1

1 + expω(π j
D−π i

C )
(5)

Λ is a situation in which a cooperator i is randomly chosen with
probability (1 − b) to meet a defector j randomly chosen, and the
defector j takes the strategy of the cooperator i. χ is a situation in
which a defector j is randomly chosen is with probability (1 − b)
to meet a cooperator j randomly chosen, and the defector j takes
the strategy of the cooperator i.

Similarly, decreasing the total number of cooperators from NC
to NC−1 is described as

T−

C = (1 − b)xcxD
1

1 + expω(π i
C−π

j
D)

+ (1 − b)xcxD
1

1 + expω(π i
C−π

j
D)

= 2(1 − b)xcxD
1

1 + expω(π i
C−π

j
D)

(6)

We consider the heterogeneous network game under accumu-
lated payoff framework. Using probability to increase the number
of cooperators from NC to NC + 1, T+

C , and the probability to
decrease the number from NC to NC−1, T−

C , the dynamics can
be approximated by a stochastic differential equation with drift
3

T+

C −T−

C and diffusion
√
(T+

C + T−

C )/N [21] in a infinite population,
nd we can consider the effect of fixation probability to investigate
ow an individual with a different strategy can take over the
ntire population in a finite population.

or an infinite population size. In a large population, assortative
earning dynamics may be approximated by a stochastic differen-
ial equation with drift T+

C −T−

C and diffusion
√
(T+

C + T−

C )/N [21].
hus,

Ċ = T+

C − T−

C +

√
(T+

C + T−

C )/N ∗ ε

= 2(1 − b)xcxD
1

1 + expω(π j
D−π i

C )
− 2(1 − b)xcxD

1

1 + expω(π i
C−π

j
D)

+

√
(T+

C + T−

C )/N ∗ ε

= 2(1 − b)xc(1 − xc)
1

1 + expω(π j
D−π i

C )
− 2(1 − b)xc(1 − xc)

×
1

1 + expω(π i
C−π

j
D)

+

√
(T+

C + T−

C )/N ∗ ε

= 2(1 − b)xc(1 − xc)(
1

1 + expω(π j
D−π i

C )
−

1

1 + expω(π i
C−π

j
D)
)

+

√
(T+

C + T−

C )/N ∗ ε

By using the calculations from the previous study [21],
( 1

1+expω(π j
D−π i

C )
−

1

1+expω(π i
C−π

j
D)
) = tanh ω

2 (π
i
c − π

j
D), then this yields

Ċ = 2(1 − b)xC (1 − xc)tanh
ω

2
(π i

c − π
j
D) +

√
(T+

C + T−

C )/N ∗ ε

where ε is the Gaussian white noise with variance 1.
In an infinite population, as N increases, the diffusion term√
(T+

C + T−

C )/N ∗ ε vanishes at
√
1/N , and the population sat-

sfies a well-mixed condition. π i
C and π

j
D can be approximated

y πC and πD, which are, respectively, the average payoffs of
he cooperators and defectors, respectively. Meanwhile, tanh
ω
2

(
π i
c − π

j
D

)
=

ω
2

(
π i
c − π

j
D

)
+O(x3), where O(x3) is a higher

rder infinitesimal, yields

Ċ = ω(1 − b)xC (1 − xC )(πC − πD). (7)

Hence, we obtain a replicator equation to represent assortative
earning dynamics to study the evolutionary dynamics of the
trategy. Moreover, Eq. (7) is equivalent to the payoff monotone
ynamics [2] method, which can be used to predict the equilib-
ium in a dynamic system by comparing the average payoffs of
he cooperator and defector. Consequently, Eq. (7) consists of the
ifference between the expected payoff of the cooperator and
hat of the defector:

(xc) = πC − πD, (8)

he πC and πD will be computed by the stationary distribution of
he assortative linking dynamics:

C = 2νCCRLN/2Nxc + νCDSLN/2Nxc = νCCRL/xc + νCDSL/2xc

πD = νCDTLN/2NxD+2νDDPLN/2NxD = νCDTL/2xD+νDDPL/xD

urther, from Eq. (3), and substituting νCC , νCD, and νCD into the
bove equation, we obtain

πC = xC [a + (1 − a) xC ]RL/xC + 2xC (1 − a) (1 − xC )SL/2xc

= [a + 1 − a x ]RL+ 1 − a (1 − x )SL
( ) C ( ) C
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Fig. 2. Two stable equilibria in the evolutionary process.

πD = 2xC (1 − a) (1 − xC )TLN/2NxD + [a + (1 − a)(1 − xC )]

× (1 − xC )PL/xD

= xC (1 − a) TL+[a + (1 − a)(1 − xC )]PL

ubstituting the equations above into Eq. (8), we have

(xc) = a(R − S) + S − P + (1 − a)(R + P − S − T )xc (9)

herefore, the payoff monotone dynamics are determined by the
igns of

(0) = a(R − S) + S − P (10)

(1) = R − T + aT − aP (11)

roposition 1. In the PD (T > R > P > S, 2R > T + S):
(1) There is a unique stable equilibrium xc = 0 if and only if 0 < a
<

(T−R)
(T−P) ;

2) There is a unique stable equilibrium xc = 1 if and only if (T−R)
(T−P)

< a < 1 and xc >
P−S−a(R−S)

(1−a)(R+P−S−T ) .

Because η(xc) is linear in xc , when η(0) < 0 and η(1) < 0
(i.e., when (R − S) + S − P < 0 and R − T + aT − aP < 0),
(xc) is always less than zero for any xc , such that cooperators

always have a smaller expected payoff than defectors, and there
is a unique stable equilibrium xc . In this case, according to a (R −

) + S − P < 0 and R − T + aT − aP < 0, we have a < (T −

)/(T − P) and a < (R − S)/(P − S). In the PD scheme, the payoff
tructure T > R > P > S and 2R > T + S yield 0 < (T − R)/(T −

) < 1 < (R − S)/(P − S). Because 0 < a < 1, we have 0 < a <

T − R)/(T − P), and this yields Proposition 1(1).
Similarly, when η(0) < 0 and η(1) > 0, as shown in Fig. 2, the

expected payoff of cooperators is larger than that of defectors (xc
> xc∗) and the expected payoff of cooperators is smaller than that
of defectors as xc < xc∗. This means that when cooperators are
rare, xc = 0 in a stable equilibrium; otherwise, when defectors
are rare, xc = 1 in a stable equilibrium. Hence, there are two
stable equilibria: xc = 0 and xc = 1. In this case, given η(0)
< 0 and η(1) > 0, we have a < (R − S)/(P − S) and a > (T −

R)/(T − P), so that (T − R)/(T − P) < a < 1 and xc > xc∗ are
ound. xc∗ means η(xc) = 0, so that xc∗

=
P−S−a(R−S)

(1−a)(R+P−S−T ) , thus
iving Proposition 1(2).

roposition 2. In the SD (T > R > S > P):
(1) There is a unique stable equilibrium xc = 1 if and only if (T−R)

(T−P)
< a <1;
(2) There is a unique stable equilibrium xc =

P−S−a(R−S)
(1−a)(R+P−S−T ) if and

only if 0 < a <
(T−R)
(T−P) .

When η(0) > 0 and η(1) > 0, the expected payoff of a coopera-
or is greater than that of a defector in all evolutionary processes,
hich means that there is a unique stable equilibrium, xc = 1. In
his case, with the conditions η(0) > 0 and η(1) > 0, we have a
(T − R)/(T − P) and a > (R − S)/(P − S). In the SD, we have
> R > S > P , and 1 > (T − R)/(T − P) > 0 > (R − S)/(P − S) is
4

Fig. 3. Stable equilibria xc ∗ in the evolutionary process.

obtained; thus, when (T − R)/(T − P) < a <1, there is a unique
stable equilibrium that contains only cooperators.

When η(0) > 0 and η(1) < 0 (see Fig. 3), there is a unique
stable equilibrium xc = xc∗ (0 < xc∗ < 1), which is determined
by the evolutionary process. When cooperators are rare, the ex-
pected payoff of a cooperator is higher than that of a defector and
the number of cooperators increases. When defectors are rare, the
expected payoff of cooperators is smaller than that of defectors
and the number of cooperators decreases. Thus, there is a unique
stable equilibrium, xc = xc∗ (0 < xc∗ < 1), which includes some
cooperators and defectors. In this case, when η(0) > 0 and η(1)
< 0, we have 0 < a < (T − R)/(T − P), and when η(xc) = 0, we
have xc∗

=
P−S−a(R−S)

(1−a)(R+P−S−T ) , thus giving Proposition 1(2).

Proposition 3. In the SH (R > T > P > S):
There is unique stable equilibrium xc = 1 if and only if 0 < a <

and xc >
P−S−a(R−S)

(1−a)(R+P−S−T ) .

Proof. The logic behind the proof of Proposition 3 is the same as
that for Proposition 1(2).

Together with the propositions above, we can conclude the
following:

The results shown in Fig. 4 explain the coevolution of assor-
tative linking dynamics and assortative learning dynamics in an
infinite population. These findings reveal the role of assortative
rewiring and show the conditions under which cooperation might
emerge. The increase in the degree of assortative rewiring (i.e., a
greater likelihood of rewiring to an agent of the same type at
each time step) facilitates the emergence of cooperation in the
SD. Specifically, for the PD and SG schemes, the equilibrium—
the coexistence of cooperators and defectors—is so unstable that
divergence develops as the number of cooperators changes. When
the number of cooperators is common in the population, cooper-
ation dominates defection in the PD, as the degree of assortative
rewiring increases, as well as in the SG, where the role of as-
sortative rewiring is overlooked. Consequently, the results reveal
three cases among social dilemmas in which the emergence of
cooperation depends only on the degree of assortative rewiring
(in the SD) or on the number of cooperators initially (in the SG),
and on the combination of both (in the PD).

Eq. (7) shows that b has no effect the evolutionary equilibria
in the replicator dynamics, whereas it does impact the speed
of movement toward the equilibria. As this speed slows (i.e., as
individuals with the same strategy occur less frequently than
those with different strategies), together with Proposition 2(1),
the frequency of cooperation in the SG scheme gets closer to one,
accelerating the convergence of the equilibria. In the meantime,
it also accelerates the equilibrium to be a defective equilibrium
(see Proposition 1(1)). The parameter b is hence neutral. The role
of w in the replicator dynamics is the same as the function of
b, except it operates in the opposite direction (i.e., it accelerates
convergence as it changes). A strong w exerts pressure to acceler-
ate the convergence of the equilibria, whereas a weak w retards
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Fig. 4. Evolutionary equilibria as a function of a.
Ξ

he convergence of the equilibria. In this context, an advantaged
trategy is more likely to dominate the whole population through
strong selection.

or a finite population size. In a finite large population, we ad-
ress fixation probability following previous studies [3,20,22–25].
e attempt to ascertain the possibility that a person employing
ith a certain strategy will invade and take over the population.
et ρC represent the probability that a cooperator has entered a
opulation of defectors in order to take over the entire population
nd ρD be a defector who aims to take over the entire population
f cooperators. In previous studies [3,22–25], ρC and ρD were
haracterized as follows:

C =
1

1 +
∑N−1

J
∏j

i γi
, ρD =

∏N−1
i γi

1 +
∑N−1

J
∏j

i γi
(12)

here

i =
T−

C

T+

C
.

According to Eq. (12), we have

ρD

ρC
= (

∏N−1
i γi

1 +
∑N−1

j
∏j

i γi
)/(

1

1 +
∑N−1

j
∏j

i γi
)

=

N−1∏
i

γi

=

N−1∏
i

T−

C

T+

C
. (13)

f ρD/ρC > 1, defectors take advantage of cooperators in the
volutionary process. Using the calculations in Eqs. (5) and (6)
ields

T−

C

T+

C
= 2(1 − b)xcxD(

1

1 + expω

(
π i
c−π

j
D

) )/(2(1 − b)xcxD

×
1

1 + expω(π j
D−π i

C )
)

=
1 + expω

(
π
j
D−π i

c

)
1 + expω(π i

c−π
j
D)

≈ exp−ω(π i
c−π

j
D) (14)

n a large population in which individuals are well mixed, π i
c −π

j
D

s equal to πC − πD. Substituting Eq. (9) into Eq. (14) yields

ρD

ρ
=

N−1∏ T−

C

T+

C i C

5

= exp−ω
∑N−1

i (πC−πD)

= exp−ω
∑N−1

i (a(R−S)+S−P+(1−a)(R+P−S−T ) i
N )

= exp−ω[a(R−S)(N−1)+(S−P)(N−1)+(1−a)(R+P−S−T ) 1
N

N(N−1)
2 ]  

Ξ

For Ξ > 0, we have ρC > ρD. Therefore,

> 0
→ a(R − S)(N − 1) + (S − P)(N − 1) + (1 − a)(R + P − S − T )

×
1
N

N(N − 1)
2

> 0

→ a >
T − R + P − S
R − S − P + T

=
(T − S) − (R − P)
(T − S) + (R − P)

=
1 −

(R−P)
(T−S)

1 +
(R−P)
(T−S)  

Φ

. (15)

Proposition 4. (1) In the PD, cooperators dominate defectors if and
only if Φ < a < 1;
(2) In the SD and SH, cooperators dominate defectors if and only if
0 <

(R−P)
(T−S) < 1 and Φ < a < 1.

In the PD, we have T > R > P > S and 2R > T + S such that
0 < (R − P)/(T − S) < 1. Because 0 < a < 1, when Φ < a < 1,
Eq. (15) is supported, and a cooperator invades the population of
defectors and takes over this entire population, namely, ρC > ρD.
Thus, Proposition 4(1) can be proven.

In the SD, we have T > R > S > P . Compared with the PD, it
is uncertain whether 0 < (R − P)/(T − S) < 1, and only if 0
< (R − P)/(T − S) < 1 do we have 0 < Φ < 1, and then Φ < a
≤ 1 can be met. When 0 < (R − P)/(T − S) < 1 and Φ < a <

1, cooperators are supported in the evolutionary process of the
SD. Similar considerations apply to the SH, and Proposition 4(2)
holds.

In Proposition 4, we can also focus on the role of ω. For ω = 0,
Eq. (14) will be equal to 1, this means ρC will be equivalent to ρD,
Proposition 4 will be not valid. For ω = 1, it corresponds to strong
selection and yields an accelerating speed to make a cooperator
to take over the entire population in Proposition 4. For 0 < ω <

1, it corresponds to weak selection and yields slowing speed of
results in Proposition 4.

5. Discussion and conclusion

In this study, the coevolution of assortativity in linking and
learning is investigated. We provide a novel model for networks
based on assortative linking, in which people are placed in var-
ious social dilemmas. To represent assortative linking for the
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volution of networks, we present a discrete stochastic model
n which the frequencies of various types of links are governed
y a Markov chain, and these ultimately form networks with
tructured heterogeneity. The evolution of cooperation in a
tochastic assortative network is then achieved. This finding
xtends the use of heterogeneous graph theory [10,20,23,24] to
odel evolutionary cooperation. In previous studies, more dilem-
as of heterogeneous networks have been considered, such as a
mall-world network [25] and a scale-free network [3]. Therefore,
elevant games require further study in stochastic assortative
etworks.
To examine the evolution of cooperation, we also employ a

wo-layer network approach [26–29], consisting of an interaction
etwork and a learning network. Ohtsuki et al. [26] initially
resented this concept to examine the evolution of cooperation,
laiming that it happens in a two-layer network. One layer is
n interaction network in which links are formed by the games
layers play, and the other layer is a learning network built by
earning dynamics. Our study contributes to both the interaction
etwork and the learning network models. In particular, the bulk
f prior studies have solely examined imitation dynamics through
andom learning, ignoring assortative learning. Because we know
hat people are willing to adopt a person of the same type and
xpect a higher payoff, assortative learning dynamics shed light
n this phenomenon.
Numerous experts have studied and researched the segrega-

ion phenomena [30–33]. We analyze a portion of this segregation
n terms of the evolution of cooperation in the network, but not
he hyper (a = 1) aspect. Although hyper-segregation is uncom-
on, it may occur in some religious communities. It is reasonable

or an individual to match with a person who conducts the same
ctions. However, bounded rationality, higher search costs, and
he presence of individuals with incomplete information on their
ype all prevent complete segregation. Our study concentrates on
typical reality.
In this study, heterogeneous interaction between network

odes was achieved through an assortative rewiring process. This
rocess is a preferential attachment mechanism. Previous studies
ave reported that preferential attachment can trigger assorta-
ivity, which affects evolutionary dynamics markedly [15,34,35].
or example, using the social leverage interaction, Zhang and
lsner [34] created a social leverage network in which, through
common acquaintance, the probability that cooperative agents
ncounter cooperators is increased, thus rendering interactions
on-random (i.e., the assortative matching process). The results
f their evolutionary dynamics are similar to the findings of this
tudy. Pacheco, Traulsen, and Nowak [35] focused on the role of
ctive linking in evolutionary games, where individuals differ in
he rate at which they take new interactions, and links can be
roken off at different rates, so that in some senses in a certain
etting cooperative agents encounter cooperators is increased.
he common feature of the two studies explains how interaction
ecomes assortative, generating a stable evolution of cooperation.
owever, the advantage of the present study is that it considered
n assortative rewiring process instead of a social leverage pro-
ess and used a two-layer network approach to explore the role of
ssortative linking and learning in evolutionary social dilemmas.
n addition, the different social dilemmas presented different
utcomes of evolutionary cooperation, which is interesting and
nlightening.
We neglected cultural assortativity and other types of as-

ortativity, which remains an opportunity for future studies. If
e consider cultural assortativity in rewiring linking, a hetero-
eneous population would be considered; in other words, the
volution of cooperation would occur in two populations with
6

different cultural identities. Such a study could thus explain the
evolution of cooperation among cultural groups.
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